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Abstract

A propagation pathloss model (PLM) is an important tool in wireless network

planning that allows network planners to optimize the cell towers’ distribution and

meet expected service level requirements. In this thesis, different PLMs (Hata-

Okumura, ECC-33, Ericson, SUI, Lognormal shadowing, and COST-231) have

been analyzed and compared with field measurement data. Field measurements

are carried out on Islamabad Expressway, Pakistan receiving signals from the base

stations (BTSs) located at Koral Town (BTS1), Korang Town (BTS2), and Soan

Garden (BTS3). Upon comparison, results show that the Lognormal shadowing

PLM showed the closest agreement to the measured pathloss with a minimum er-

ror of 2.86% and 2.17% for BTS1 and BTS2 respectively. The measured pathloss

in BTS3 is best estimated by the Hata-Okumura PLM with an error of 9.59%.

In wireless networks, theoretical PLMs are largely based on single slope PLM,

which falls short in accurately capturing the fading effects of the physical propa-

gation environment. However, the analysis of the measurement data does not show

agreement with this practice and reflects a multi-slope behavior. The impact of

the multi-slope phenomenon is evident from the variation in the pathloss expo-

nents of different segments of Islamabad Expressway. The lognormal shadowing

PLM is thus chosen based on its smallest error with the measured pathloss data

and is further extended to multi-slope lognormal shadowing PLM. It is observed

that the proposed multi-slope lognormal shadowing PLM leads to an improvement

of 24.8% in its agreement with measurement data reducing the minimum error to

2.15% for BTS1.
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Chapter 1

Introduction

1.1 Overview

The commercial accomplishment of the wireless communication (WCS) system,

since its introductory execution in the initial 1980s, has prompted an excessive in-

terest among the engineers of telecommunication in understanding and estimating

the characteristics of signal propagation in different environments. The impact of

wireless technology has been and will continue to be profound. The future wireless

communication system will provide the foundation for the modern society where

equipment and people can be connected anytime and anywhere.

Wireless access network has come out to be a vital tool in managing the com-

munications, particularly at home and working areas because of communication

models. During the initial period of planning the communication system, propa-

gation pathloss models (PLMs) are broadly utilized for conducting the feasibility

studies. There are various prediction PLMs accessible to estimate the pathloss.

The prediction PLMs have the main role in the optimization of signal coverage,

analysis of interference and utilization of network resources efficiently [1].

Precise estimation of pathloss is important in the planning and designing of WCS.

Such requirements are of great interest for mobile communication system design-

ers to optimize the parameters of the system, for example, the location of base

1
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stations (BTSs), level of interference and coverage of power, etc. Accurate predic-

tion techniques are required to find these parameters of a mobile communication

system that will improve the quality of service, lessen unwanted losses of power,

increase the coverage region, and determine the arrangements of best BTSs of a

specified region. The performance of WCS relies on the properties of the propa-

gation channel.

Long-term evolution (LTE) deployment was initiated at the end of 2009, with goals

to improve the standard of Universal Mobile Telecommunication System (UMTS)

in order to cope up with the future needs [2, 3]. LTE can work in modern and

more complicated arrangements of the spectrum. The evolution of high-speed

packet access (HSPA) can operate on the bases of installed apparatus within the

bandwidth of 5MHz. The fundamental requirement of a 3G and 4G LTE network

is to fulfill the need for maximum coverage and quality targets. The maximum

coverage means that the probability of availability of network service within the

geographical location should be high. The important performance factors such as

handover, received signal strength (RSS), rate of call success, the ratio of drop calls

play a vital role in wireless mobile communication and these factors are related to

quality targets. On the other hand, environmental factors like roads, geographical

structure of the area, locations of different cites, should be taken into consideration

during network planning [4].

1.2 Radio Propagation Path

Wireless communication channels are commonly defined by the four main char-

acteristics of the propagation path namely, pathoss, shadowing, multipath delay

spread, and multipath fading, as shown in Fig 1.1.

Between transmitter and mobile receiver, a signal attenuates during its transmis-

sion, this attenuation is known as the pathloss [5]. The signal power is decreased

due to the different mechanisms such as refraction, reflection, scattering, diffrac-

tion, losses of free-space, etc. Multipath fading is one of the essential properties of

the wireless communication medium. Fading is eventually the attenuation in the
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RSS over different distances; also known as shadowing when the line of sight(LOS)

is obstructed. A signal reaches its destination through various paths and distinct

angles. The time difference between the first and last multipath received signal is

known as delay spread [6].

The models that predict the signal and eventually the pathloss are known as the

PLMs. The analysis of PLMs plays a vital role in theoretical and practical as-

pects. In this regard, the pathloss exponent (PLE) is one of the most important

factors which have been considered in the analysis of the wireless communication

channel. PLE is the monotonically decreasing rate of RSS with T-R distance and

the value of PLE relies on propagation area. For the estimation of PLE, extensive

measurements of RSS are used. Fluctuations in RSS occur due to shadowing is,

in fact, the challenge in the estimation of PLE.

Figure 1.1: A typical wireless communication channel.

In a WCS, there is a need for enough understanding of wireless mobile communi-

cation systems, the ability to use suitable PLM among various propagation PLMs.

To make sure the best performance of a cellular structure, the design of the net-

work depends on the pathloss for designing and planning the wireless systems [7].

In the design and analysis of the WCS, the pathloss is investigated to be the most

important factor [5]. The following block diagram represents the procedure of

calculating the pathloss.
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Figure 1.2: Block diagram for the calculation of propagation pathloss.

1.3 Radio Propagation Phenomena

1.3.1 Mechanisms of Signal Propagation

The electromagnetic signal is propagated through a channel by the following basic

mechanisms [9],

• Reflection/Refraction

• Diffraction

• Scattering

1.3.1.1 Reflection/Refraction

When the propagation of electromagnetic wave starts, the reflection appears when

a wave impinges upon a smooth surface (as shown in Fig 1.4(a)) or an object which

has very large dimensions when compared to the wavelength of the propagating

wave [10]. Reflection occurs due to many sources such as the surface of the ground,
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Figure 1.3: Propagation pathloss mechanisms.

buildings, the walls, equipment, and tall trees.

Because of the variations in air temperature, the density of the climate is changed.

If the signal is affected by this kind of channel, the signal changes its direction

from its original path and then refraction occurs (as shown in Fig 1.4(b)).

Figure 1.4: (a) Reflection (b) Refraction.

1.3.1.2 Diffraction

In wireless communication, diffraction occurs when propagation of wave starting

from the BTS to the mobile terminal station(MTS) is obstructed with the sharp

surface edge, as in Fig 1.5. When non line of sight (NLOS) present in the path

of the signal, the signal propagates behind the obstacle through diffraction mech-

anism. Diffraction does not only depend on the geometry of obstacle but it also

relies on the angle of the incidence, signal phase, and amplitude.
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Figure 1.5: Diffraction mechanism.

1.3.1.3 Scattering

Scattering occurs when the channel consists of objects with dimensions that are

small as compared to the wavelength and compared to the obstacles per unit is

large enough as shown in Fig 1.6. In practice, scattering occurs because of small

objects such as lamp posts and street signs in the city, etc.

Figure 1.6: Scattering mechanism.

1.3.2 Received Signal Strength

The received signal strength (RSS) is a measure of how strong the received signal

was when it reached its final destination. If the value of RSS is high, then a

strong signal is received. If RSS value is very low then the WCS may fail. RSS is

determined as [11]:

RSS = Pt +Gt +Gr–PL–A (1.1)
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where, Pt is the transmitter power, Gt denotes the transmitter antenna gain, Gr

represents the receiver antenna gain, PL is the pathloss, and A represents the

cable and connector loss.

1.3.3 Pathloss

In wireless communication channels, the signal is suffered from attenuation while

traveling from transmitter to receiver as shown in Fig 1.7. This attenuation is

called pathloss. Pathloss is represented by a positive quantity measured in dB.

The pathloss depends on the contours of the terrain, channel (dry air or moist air),

area (urban, suburban, rural, and vegetation), the distance from a transmitter to

receiver, and the antenna heights, etc [12]. The pathloss can be expressed as [13]:

PL(d) = PL(d0) + 10n log10(
d

d0
) (1.2)

where, d represents the distance from BTS to MTS , d0 denotes the reference

distance from transmitter, and n is used to represent the PLE.

Figure 1.7: Pathloss phenomenon.

1.3.4 Pathloss Exponent/Pathloss Slope

In modeling of pathloss, PLE is one of the most important factors which have

been considered in the analysis of the wireless communication channel. PLE is the
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monotonically decreasing rate of RSS with distance and the value of PLE relies

on the propagation area as presented in Table 1.1. For the estimation of PLE,

extensive measurements of RSS are used. PLE can be calculated as [51]:

n =
Pr(dmin) − Pr(dmax)

10 log10(
dmax

dmin
)

(1.3)

where, Pr(dmin) is the received power or RSS at the minimum distance (reference

distance), Pr(dmax) represents the received power or RSS at the maximum dis-

tance.

Table 1.1: PLE values in different areas [14, 50].

Type of Areas PLE

Free space 2

Urban area 2.7 to 3.5

Shadowed urban region 3 to 5

Inside a building 1.6 to 1.8

Obstructed in a building 4 to 6

Obstructed in a factory 2 to 3

1.4 Necessity of Pathloss Models

It is essential to estimate the propagation characteristics of the system through the

channel so that different parameters of a signal can be estimated more precisely

in the mobile communication system. In WCS, it is very important to estimate

the pathloss with maximum accuracy. In this regard, the propagation PLMs are

the solution of estimating the pathloss with a small standard deviation. Hence, it

will help the engineers and planners of the network to optimize the coverage area

and to utilize the right transmit power. Furthermore, the types of equipment used

to obtain the field measurements are very costly. Thus, propagation PLMs have

been designed to estimate the pathloss as a less costly, suitable way and better
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alternative. An accurate prediction PLM helps to optimize the transmitter power,

coverage area and reduce the interference issues of other BTSs [9].

1.5 Pathloss Models

In WCS, information exchange from the transmitter to the receiver is accomplished

through electromagnetic waves. Interaction between area and electromagnetic

waves decreases the signal strength, which causes pathloss. Different PLMs are

used to estimate the pathloss [7, 17]. Propagation models are classified in the

following three categories,

1. Empirical Model

2. Deterministic Model

3. Stochastic Model

Figure 1.8: Different types of propagation PLMs.

Sometimes, it is difficult to define any random situation with the help of a math-

ematical model. Then, we use random data to observe the approximate behavior.

An empirical model consists of algorithms and different mathematical equations
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to perform the signal propagation. These models consist of a large number of mea-

surements [15]. Empirical PLMs are further divided into two types such as time

dispersive and non-time dispersive (as shown in figure 1.8). The time dispersive

model gives us the information about the properties of time dispersive medium

like channel having delay spread during the multipath effects [16].

The deterministic models utilize different laws to guide the electromagnetic signal

propagation in order to find the RSS at an exact location. Mostly, deterministic

models need a whole 3D map of the propagation area [15]. The modern system

uses the specific site propagation model and graphical system model to predict

the radio coverage of the signal. Designers of wireless system use the building

databases to create the original presentation of the buildings and different fea-

tures of the terrain. For the 3D representation of the building on the software, the

ray-tracing technique is used [9].

Stochastic models are used to model different environments as a series of vari-

ous random variables. Stochastic models need less information about the area but

these models are the least accurate. Prediction of propagation pathloss for the fre-

quency of 3.5GHz is done with the help of empirical and stochastic models [9, 15].

In this thesis, different PLMs are investigated in order to perform a comparative

analysis of the measured pathloss with the theoretical PLMs. For this purpose,

the following six PLMs are used and analyzed at a frequency of 1.8 GHz.

• Hata-Okumura Pathloss Model

• COST-231 Hata Pathloss Model

• Lognormal Shadowing Pathloss Model

• Stanford University Interim (SUI) Pathloss Model

• Ericson Pathloss Model

• ECC-33 Pathloss Model
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1.5.1 Hata-Okumura Pathloss Model

The Hata-Okumura model [16, 19] is a very famous empirical PLM, which is based

on the Okumura PLM and it is used to predict the RSS. The Hata-Okumura

model is a well-developed model for the Ultra High Frequencies (UHF). The range

of UHFs is between 300 MHz and 3 GHz. Previously, through the International

Telecommunication Union recommendations (ITU-R), the ITU established this

model for more extension up to 3.5 GHz. The Okumura model does not give any

information for more than 3 GHz. By utilizing the information of the Okumura

model, an extrapolated technique is applied to estimate the model for frequencies

of more than 3 GHz. The Hata-Okumura model was developed by gathering a large

amount of data in a city of Japan. Moreover, the Hata-Okumura PLM provides

correction parameters for open and suburban environments [9]. The Hata PLM

consists of equations based on the measurements and is derived from the curves

of Okumura.

Figure 1.9: Attenuation factor for Okumura model [9].

Figure 1.9 shows that the base station antenna height gain G(hte) and the mobile

antenna height gain factor G(hre) varies 20 dB/decade and 10 dB/decade, respec-

tively. Hata proposed the standard formula of propagation pathloss for an urban
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area, along with the correction factors to apply in other areas like suburban, ru-

ral, etc. However, the Hata-Okumura model does not consider the terrain profile

between transmitter and receiver as both the Hata and Okumura assumed that

transmitter would normally be situated on hills [21].

Table 1.2: Pathloss equations for different areas.

Area Pathloss Equation (dB)

Urban A + Blog (d) - E

Suburban A + Blog (d) - C

Rural A + Blog (d) - D

where,

A = 69.55 + 26.16 × log(f) − 13.82 × log(hb) − a(hm), (1.4)

B = 44.9 − 6.55 × log(hb), (1.5)

C = 2 × (log10(f/28))2 + 5.4, (1.6)

D = 4.78 × (log10(f))2 + 18.33 × log10(f + 40.94), (1.7)

E = 1.1 × log(f) − 0.7 × (hm) − 1.56 × log(f) − 0.8, (1.8)

where, f is the frequency in MHz, d represents the distance between BTS and

MTS in meters, hb is the height of BTS antenna in meters, hm is the height of

mobile receiver antenna in meters, and a(hm) is the correction parameter in dB.

The effective height of MTS antenna a(hm) is defined in [21] as:

a(hm) = [1.1 × log(4)–0.7] × hm–[1.56 × log(f)–0.8]. (1.9)

Figure 1.10 shows the parameters of Hata-Okumura model.
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Figure 1.10: Parameters of Hata-Okumura model.

1.5.2 COST-231 Hata Pathloss Model

The Hata PLM is introduced as a mathematical expression to mitigate the best

fit of the graphical information given by the old Okumura model [7]. Hata model

is utilized for the frequency from 150 MHz to 1500 MHz to estimate the median

pathloss for the distance from the transmitter to the antenna of the receiver up to

20 km. COST-231 Hata PLM is a combination of the F. Ikegami and J. Walfish

model [24]. Moreover, COST-231 Hata model is preferable for the plane subur-

ban and plane urban areas that have the same height of buildings [9, 23]. The

COST-231 PLM is the expansion of the Hata-Okumura PLM. This model is used

to estimate the pathloss in a wireless mobile communication system and it is suit-

able for frequency from 900 to 2000 MHz. COST-231 Hata model proposed the

correction factors for suburban, rural, and urban areas. The basic equation of

pathloss of this model is expressed as [24]:

PL(dB) = 46.3 + 33.9 × log10(f) − 13.82 × log10(hb) − a(hm) + (44.9 − 6.55×

log10(hm) × log10(d) + cm

(1.10)

where, f denotes the frequency in MHz, hb is the height of BTS antenna in meters,

hr is the height of MTS antenna in meters, cm represents the correction parameter

and its value is defined according to area. As shown in Table 1.3, cm and a(hm)

are described for urban, suburban and open areas in [23, 25].
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Table 1.3: Parameter and correction factors for different areas [25].

Area Correction Factor cm Parameter a(hm)

Urban 3dB 3.2 × (log(11.75 × hr))4.97

Suburban 0dB (1.1 × (0.7))hr − (1.56 × (0.8)

Rural 15dB (1.1 × (0.7))hr − (1.56 × (0.8)

1.5.3 Lognormal Shadowing Pathloss Model

The measurement and theoretical based propagation PLMs are used to estimate

the average RSS power reduced logarithmically with distance, whether it is in the

outdoor or indoor radio medium. The amplitude of the signal changes due to the

effects of shadowing and it is often modeled using the lognormal distribution. The

meaning of Lognormal is that the local mean power is defined in the logarithmic

scale. This model allows predicting the pathloss in a practical manner and also

offers as the main advantage of the inclusion of all terms that influence the prop-

agation. Fig 1.11 shows the effects of random shadowing over a large number of

measurement locations which have a similar T-R separation, but different levels of

clutter on the path of propagation is referred to as lognormal Distribution. This

phenomenon is known as lognormal shadowing. In the log distance PLM, the aver-

age large scale pathloss for an arbitrary T-R separation is defined as a function of

distance by using a PLE as shown in Equation (1.11). Variations in environmental

clutter at different areas having a similar T-R separation aren’t represented in the

log distance PLM. This prompts that the estimated signals which are different

from the mean values of RSS predicted by the Equation (1.11). In the lognor-

mal shadowing model, Equation (1.12) is used to represent the variations in the

measured data:

PL(d) = PL(d0) + 10n log10(
d

d0
), (1.11)

PL(d) = PL(d0) + 10n log10(
d

d0
) +Xσ, (1.12)

where, n represents the PLE. The value of PLE relies on the type of area. Xσ

represents a random variable with zero mean and standard deviation of σ [26].
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Figure 1.11: Result of lognormal shadowing PLM [26].

1.5.4 Stanford University Interim Pathloss Model

The development of the SUI model took place under the Institute of Electrical and

Electronics Engineers (IEEE) 802.16 wireless access working group. This model

originates from the expansion of the Hata PLM with a frequency band higher than

1.9 GHz. The correction factors are used to expand the SUI model up to the fre-

quency of 3500 MHz. In SUI model, the ranges of antenna heights of transmitter

and receiver are from 10 meters to 80 meters and 2 meters to 10 meters, respec-

tively [21]. This model classifies three distinct kinds of terrain such as terrain

A, B, and C. The terrain A is considered for the mountainous environment with

heavy vegetation. In this terrain, the pathloss is the highest. Terrain B is used

for the mountainous areas with very little vegetation and a flat area with dense

trees while terrain C is used for plane areas or rural with very little vegetation.

The basic pathloss equation with the correction parameters of the SUI model is

presented as [16]:

PL = A+ 10n log10(
d

d0
) +Xf +Xh + s for d > d0 (1.13)
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where, d0 denotes the reference distance in meters, Xf is the correction parameter

for frequency over 1.5GHz, Xh is the correction parameter for height of receiver

antenna in meters, s represents the shadowing correction parameter in dB, and γ

denotes the PLE. The factors n, A, Xf , and Xh are presented as [16, 21]:

n = a− bhb +
c

hb
, (1.14)

where the constant a, b, and c are given in Table 1.5.

A = 20 log10(
4πd0
λ

) (1.15)

Xf = 6.0 log10(
f

2000
) (1.16)

Xh =

−10.8 log10(
hr

2000
) for terrain A and B

−20 log10(
hr

2000
) for terrain C

(1.17)

Table 1.4: Parameter values of different types of terrains.

Parameters of SUI Model Terrain A Terrain B Terrain C

a 4.6 4.0 3.6

b 0.0075 0.0065 0.005

c 12.6 17.1 20

1.5.5 ECC-33 Pathloss Model

ECC-33 PLM was proposed by Electronics Communication Committee (ECC).

Basically, it is extrapolated from the measurements of the Okumura model and

the assumption of Okumura is modified in this model [27]. The initial test of

the Okumura model was completed in the suburban locations of Tokyo. A typical

European city is quite distinct from the characteristics of the environment of Tokyo

which is a highly built-up city. The ECC-33 PLM is an empirical model which
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consists of four terms and it can be defined as,

PL(dB) = Abm + Afs–Gt–Gr. (1.18)

The factors Afs, Abm, Gt, and Gr are individually defined as [29]:

Afs = 92.4 + 20 log(d) + 20 log(f), (1.19)

Abm = 20.41 + 9.83 log(d) + 7.89 log(f) + 9.56(log(f))2, (1.20)

Gt = log(
hb
200

)(13.958 + 5.8 log(d))2. (1.21)

For less urban area [28],

Gr = (42.57 + 13.7 log(f))(log(hr) − 0.585). (1.22)

For large urban area,

Gr = 0.759hr − 1.862. (1.23)

1.5.6 Ericson Pathloss Model

In order to estimate the pathloss, the engineers of network planning used a software

given by Ericsson organization to produce the Ericsson model. The Ericson PLM

is formed on the improved version of Hata-Okumura PLM for different types of

propagation areas according to parameters as shown in Table 1.6. According to

this model, pathloss can be calculated as [30]:

PL = k0 + k1 + log10(d) + k2 log10(hb) + k3 log10(hb). log10(d) − 3.2[log10

(11.75hr)
2] + 44.49 log10(f) − 478[log10(f)]2

(1.24)

where, the values of k0, k1, k2 and k3 for distinct terrains are shown in Table 1.6.
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Table 1.5: Ericsson PLM constants [30].

Environment k0 k1 k2 k3

Urban 36.2 30.2 12.0 0.1

Suburban 43.2 68.93 12.0 0.1

Rural 45.95 100.6 12.0 0.1

1.6 Research Motivation and Objectives

The motivation of this work came from various research papers in which many

researchers performed the comparisons of different propagation PLMs with field

measured data. In various countries, researchers took data from different areas

considering some selected aspects of the communication link and made its com-

parison with propagation PLMs. The PLMs have been a topic of interest for the

researchers over the last three/four decades. As it will be discussed in the lit-

erature survey, a comparative analysis has been done in many countries such as

Banta (Algeria), the state of Haryana (India), Kuala Lumpur (Malaysia), Japan,

etc. To the best of our knowledge, no such analysis has been made for any area of

Pakistan, which analyzes the communication link loss considering the behaviour

of PLE.

This research is aimed to make a comparative analysis of the field measurements

with different propagation PLMs like Hata-Okumura, ECC-33, COST-231, Log-

normal shadowing, Ericson, and SUI models. In this thesis, six PLMs have been

analyzed and used at a frequency of 1.8 GHz to estimate pathloss at different

segments of a busy highway.

1.7 Thesis Organization

Organization of the thesis is in the following order;

Chapter 1: Introduction

This chapter gives an introduction about the propagation PLMs. In addition, the

basic principles of propagation mechanisms are also discussed in this chapter.
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Chapter 2: Literature Survey and Problem Formulation

This chapter presents a literature survey on the topics of comparison of propaga-

tion PLMs with field measurement data for distinct areas, multi-slope modelling

and lognormal shadowing PLM. The literature survey is accompanied by a critical

gap analysis of the research. This gap analysis then proceeds towards problem

formulation. At the end of the chapter, research methodology and thesis contri-

butions are presented.

Chapter 3: Field Measurements

This chapter presents the measurement setup, the softwares and hardware used,

and the propagation area in which field measurements are obtained. The infor-

mation and parameters of each BTS are also presented. Moreover, measured RSS

and pathlosses are presented through simulations.

Chapter 4: Comparative Analysis of Field Measurements

This chapter presents the results found by the comparative analysis of PLMs with

field measurements on the basis of pathloss. Moreover, the comparative study of

PLMs in different countries is also analyzed. By the end of this chapter, a single

slope PLM is presented.

Chapter 5: Multi-slope Lognormal Shadowing PLM

In this chapter, the multi-slope model is presented in two different ways, i.e., seg-

mental multi-slope model and single-reference multi-slope model. Both multi-slope

PLMs are also analyzed based on PLEs. Afterwards, the simulation results are

presented to demonstrate the performance of the proposed segmental multi-slope

lognormal shadowing PLM. At the end of this chapter, the distribution of field

measurements is also discussed.

Chapter 6: Conclusion and Future Work

This chapter concludes the whole discussion made throughout this thesis and elab-

orates the future work.
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Literature Review and Problem

Formulation

This chapter presents a literature survey on the topics of comparison of propaga-

tion PLMs with field measurement data for distinct areas, multi-slope modelling

and lognormal shadowing PLM. The literature survey is accompanied by a critical

gap analysis of the research. This gap analysis then proceeds towards problem

formulation. At the end of the chapter, research methodology and thesis contri-

butions are presented.

2.1 Background

Propagation PLMs have conventionally concentrated on estimating the RSS at a

distance from the BTS. The prediction PLMs have a significant role in the opti-

mization of radio frequency coverage, analysis of interference, and efficient usage

of the available system resources [1]. Due to the pathloss, the power of the trans-

mitted signal decreases, therefore, the analysis of the pathloss plays a vital role in

both theoretical and practical aspects of wireless communication [32]. In WCS,

there is a need for enough understanding to use suitable PLMs among various

PLMs. In the cellular communication systems, accurate propagation PLMs help

20
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us to identify the locations where new cell sites are required for providing the

network coverage and provide acceptable cost estimation. On the other side, the

estimation of inaccurate pathloss would either reduce the performance of the sys-

tem or increase the cost of system [39, 40]. The performance of WCS relies upon

the characteristics of the channel. The characteristics of the channel affect the

design of the transmission strategy. PLMs and RSS play a vital role in the op-

timization of RF coverage. There are no universally accepted PLMs because the

terrain conditions vary from place to place. It is needed to estimate the channel

characteristics accurately in order to reduce the effects of interference. Therefore,

extensive investigation on the effects of signal propagation pathloss has drawn a

considerable attention [31].

The fundamental requirement of a 3G and 4G LTE network is to fulfill the need

for maximum coverage and quality targets [33–35]. The maximum coverage means

that the probability of availability of network service within the geographical lo-

cation should be high. The important performance factors such as handover, RSS,

rate of call success, and the ratio of dropped calls play a pivotal role in achiev-

ing the quality targets of any mobile communication system. On the other hand,

environmental factors like roads, geographical structure of the area, location of dif-

ferent cites, should also be taken into consideration during network planning [4].

2.2 Comparative Studies of Propagation Models

A great amount of work has been done on the comparison of field measured data

with theoretical PLMs in different countries. Several studies conducted in Banta,

Malaysia, India, and other countries observed that various common PLMs per-

formed less accurately when compared to field measurements. The results of the

comparison of previous studies are discussed in this section.
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2.2.1 Banta Algeria Study

In [6], the Banta city situated in Algeria was selected to obtain the field measure-

ments for the comparative analysis of various PLMs. The comparison between

measured pathloss and the predicted PLMs was done for two different BTSs (BTS1

and BTS2). For BTS1, the experimental data was taken in a radius of 1 km cov-

ering a rural area alongside, BTS2 covering the small area in a radius of 2.5 km

and it is assumed that for adjacent BTSs handover occurs automatically, whenever

the RSS is low. Special Huawei U6100 mobile phone, a laptop in which Huawei

GENEX Probe software was installed, Global Positioning System (GPS) receiver

(NMEA), and a receiving antenna were used for the collection of data. The exper-

imental data was taken during driving a vehicle within the coverage area of BTSs

while continuously recording the RSS. The parameters of the BTSs were taken

from the ”Mobilis” of Algeria for the analysis as shown in Table2.1.

Table 2.1: Parameters of the BTS used in Banta Algeria study [6].

Parameters Units BTS1 BTS2

Transmitted power dBm 46 43

Gain of transmitter antenna dBi 17.5 16.7

Gain of receiver antenna dBi 0 0

Height of transmitter antenna m 25 35

Height of MTS antenna m 1.5 1.5

Frequencies MHz 953 957.4

2.2.1.1 Equipment/Method used in this Measurements

The distribution system loss minimum reconfiguration technique using a genetic

algorithm (GA) was proposed in [6] to optimize the empirical models properly and

make it acceptable to the desired coverage area. In this technique, the number

of iterations is reduced for distribution system reconfiguration. GA was used to
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make an optimized closed solution with the help of acquiring the robust nature of

genetics. By using the GA, new values were presented for the COST-231 PLM on

the basis of field measured data.

2.2.1.2 Result of Comparative Analysis

The results of the Banta study show that for both BTS1 and BTS2, only the

COST-231 PLM was found closer to the measured data. Hence, COST-231 PLM

with proposed modification was recommended for Banta city.

2.2.2 Pondicherry-Villupuram Highway Study

The study in [38] proposed a propagation PLM for highway area between Pondicherry-

Villupuram which is situated in Poondiyankuppam, Tamil Nadu. Comparative

analysis of PLMs with field measurements obtained from Bharat Sanchar Nigam

Limited (BSNL) for Pondicherry, India has been implemented. PLMs such as

Hata-Okumura, COST-231 and ECC 33 models were analyzed and compared.

The RSS was calculated regarding distance and model that can be adopted to

reduce the number of handoffs and avoid effects of ping-pong were determined.

The parameters shown in Table 2.2 were used in simulations of different PLMs.

Table 2.2: Values of parameters used in Villupuram highway study [38].

Parameters Units Values

Transmitted power dBm 43

Height of Transmitter antenna m 30

Gain of transmitter antenna dBi 18

Distance from the transmitter to receiver km 2

Height of Receiver antenna m 3

Operating frequencies MHz 1800
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2.2.2.1 Equipment/Method used in this Measurements

E6474A Agilent model was used to find the number of RSS by using the mobile in

the Pondicherry Villupuram highway. Agilent technologies give drive test solution

and the E6474A model has the alternative of server-based software licensing. This

model is used to keep up a pool of E6474A measurement licenses on a server

and to contribute them to drive-test customer [39, 40]. Handover margins which

have high RSS value can cause poor reception and this increase in the number of

dropped calls. Meanwhile, handover margins that have low RSS value can give the

“ping-pong effects”. The ping-pong means handover to and fro between a cell pair

frequently. The increasing rate of handover between cells within the same network

leading to frequent dropped calls, network congestions and poor handovers in and

around highways, require further investigation. Hence, the decision of handover

was taken optimally from test drive adjacent cell RSS to decrease the ratio of

dropped calls and the effects of ping-pong.

2.2.2.2 Result of Comparative Analysis

The results presented in the Pondicherry-Villupuram highway study show that the

measured pathloss was best estimated by the Hata-Okumura PLM. Moreover, it

was observed that the height of the transmitter is not directly proportional to the

pathloss.

2.2.3 Kuala Lumpur(Capital of Malaysia) Study

Many studies conducted in different areas of Malaysia have observed that the

commonly used PLMs perform less efficient when these propagation models are

compared with measured values [42, 43]. In [44], four different sites were chosen

in the Kuala Lumpur, Capital of Malaysia to obtain the measured data. The

International Islamic University of Malaysia and the University of Putra Malaysia

were chosen to acquire the measurements. In each university, two cell sites were
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taken and all the measurements were taken during the daytime. The performance

of PLMs like the ECC-33 model, Hata-Okumura PLM, the COST-231 PLM, SUI

model, Egli model, Lee model, Lognormal shadowing model was compared with

the measured data.

2.2.3.1 Equipment/Method used in this Measurements

Test equipment for the mobile system (TEMS) was used in obtaining the field

measurements. TEMS is a technology used by operators of telecommunication to

measure, analyze and optimize their mobile networks. Additionally, the system

used the GPS and mobile handset of T610 in which TEMS software was installed.

Ericson handset was used to find the RSS. There are three coordinates of the GPS

receiver: Longitude, Latitude, and Altitude. These coordinates were synchronized

with the level readings of received power.

2.2.3.2 Result of Comparative Analysis

From the outcomes of the Kuala Lumpur study, it can be observed that the lognor-

mal PLM gave good results for the smaller distances. Moreover, ECC-33 and Lee

PLMs were overestimating the values of measured pathloss whereas, COST-231

and Egli were underestimating the measured pathloss values.

2.2.4 South-South Part of Nigeria Study

This research presented in [45] attempts to find the most suitable propagation

PLM in the South-South part of Nigeria. Two different cell sites operating at

the frequency of 900MHz and 1800MHz were used for the experiment in an urban

area. For comparison of field measurements with existing PLMs, the pathloss

was measured and then the measured pathloss was compared with the theoretical

PLMs like the Hata-Okumura, Cost-231, SUI, Ericsson, and Free Space. The

parameters shown in Table 2.3 were used in simulations of different PLMs.
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Table 2.3: Simulation parameters used in Nigeria study [45].

Parameters Units Values of cell site-1 Values of cell site-1

Transmitted power dBm 40 40

Gain of transmitter antenna dBi 17.5 17.5

Height of transmitter antenna m 40 42

Height of mobile antenna m 1.5 1.2

Frequencies MHz 900 1800

2.2.4.1 Equipment/Method used in this Measurements

Ericsson k800i testing equipment was used for site verification, and calls were

made at each test point until it established and the information of RSS sent over

the air interface between the transmitter and the receiver was read. For each site,

RSS was measured at a reference distance of 200m from the transmitter and a

subsequent interval of 200 meters up to 2000 meters.

2.2.4.2 Outcomes of the Comparative Analysis

The outcomes presented in the South-South part of Nigeria study show that the

variations exist between field measurements and the existing empirical PLMs.

However, a slight difference in COST-231 model was observed at the distance

of 1.4km and 1.2km in both site-1 (900MHz) and site-2 (1800MHz) respectively.

Results proved that the COST-231 model was found very effective for the radio

wave propagation pathloss prediction in the South-South part of Nigeria.

2.2.5 Advanced Three Dimensional Computations of Pathloss

Models

The vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication

has increased with the requirement of Vehicular Ad-hoc Networks (VANETs) and
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small traffic Systems. In [46], simulations of the propagation PLMs in V2V and

V2I networks used in the smart Traffic System was presented. For Matlab based

simulations of PLMs, advanced three dimensional (3D) computations of PLMs,

environment scenario and power delay profile (PDP) were used. The simulation

of PLMs in V2V and V2I wireless communication showed accurate results as com-

pared to actual experimental outcomes presented in [47]. A complicated simula-

tion scenario was represented very easily by using such simulations whereas real

experimental setup is not feasible.

2.2.6 Tuning of COST-231 Model

The tuning of PLMs is a significant problem in the planning of an efficient network.

The study in [48] proposed a tuning method of the COST-231 PLM to maximize

the accuracy of the PLM. This method is based on obtaining a large number of

RSS measurements using the LTE technique. The measurements of RSS were used

in their study presented in Table 2.4. The predictions pathloss of the tuned model

was then compared with the COST-231 PLM. On the basis of LTE measurements

obtained from mobile devices, they developed a hardware and software system

to find the correction factors for the propagation PLM. The calculation of the

correction factor of the COST-231 PLM was found to be 13.3 dBm.

Table 2.4: Comparison between the theoretical and experimental values of
RSS [48].

Coordinates (Lat,Long) Theoretical values (dBm) Experimental values (dBm)

55.0128,82.9508 -73 -90

55.0122, 82.95 -91 -105

55.0125,82.9492 -96 -97

55.0128,82.9481 -104 -113

55.0133,82.9470 -108 -92

55.0129,82.9493 -90 -118
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2.2.7 Haryana (State of India) Study

In [49], three different locations were selected in Haryana (state of India) to obtain

field measurements. Their test measurements were carried out in an urban, sub-

urban and rural areas at 900MHz and 1800MHz frequency. Authors carried out

a drive test by using spectrum analyzer tool and they successfully measured the

pathloss values for various terrains. They considered the SUI model, Log distance

PLM, Hata-Okumura PLM, ECC-33 model, and COST-231.

2.2.7.1 Result of Comparative Analysis

As presented in their results, the SUI model and ECC-33 model showed the perfect

output in an urban area. COST-231 pathloss, ECC-33, and SUI PLMs showed

the acceptable result in a suburban environment. The HATA-Okumura PLM gave

good results in the urban and suburban environments whereas the HATA-Okumura

and Log distance PLMs gave better results in the rural environment.

2.3 Related Studies about Multi-slope Modelling

and Lognormal Shadowing Model

2.3.1 Resource Optimization Exploiting Multi-slope Pathloss

Model

The research in [56] analyzed different multi-slope PLMs, where different commu-

nication links are characterized by various PLEs. The authors proposed a system

for joint user association, subcarrier and power allocation on the downlink of a

heterogeneous network (HetNet). They compared the performance of the pro-

posed method under various PLMs with shown effectiveness of dual slope PLM

in comparison to the single slope PLM. They deduced that the dual slope PLM
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shows significant improvement in the performance of the network as compared to

the single slope PLM by estimating the PLE accurately on the distance.

2.3.2 Downlink Network Analysis with Multi-slope Pathloss

Model

In [57], the authors analyzed the probability of network coverage and potential

throughput under the multi-slope PLM. They focused on the function of dual

slope PLM, which is used to accurately estimate various practical scenarios. The

distributions of SIR, SNR, and SINR before finding the potential throughput scal-

ing was derived. The outcomes show that the SIR decreases with network density,

while the converse is true for SNR, and thus the network coverage probability in

terms of SINR is maximized at some finite density.

2.3.3 Modeling of Indoor Channel using Multi-slope

Modeling

This research [53] presented a log distance multi-slope model and the indoor distri-

bution of pathloss. In normal and lognormal distributions, the value of standard

deviation defines various effects of fading. The particle swarm optimization (PSO)

method was used to find the mean square error (MSE) and MSE was optimized us-

ing multi-slope models. In the multi-slope model, parameters of the channel were

determined using the empirical values collected in [37, 54, 55]. Outcomes of dis-

tributed pathloss were processed with the help of the PSO algorithm to optimize

the normal and lognormal distribution. The multi-slope model was estimated by

using the PSO algorithm at frequency f = 2.5 GHz. For the normal distribution,

the deviation error of 15.9 dB was achieved after optimization.
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2.3.4 Modeling of Indoor Signal Propagation using

Lognormal Shadowing

The study in [50] analyzed the distribution of field measured data. Alongside, the

accuracy of the lognormal shadowing PLM by showing the relationship between

the T-R distance and RSS was presented. The characteristics of slow fading were

measured, with effects of shadowing as well as without effects of shadowing by

considering the lognormal distribution. At the frequencies of 2.4 GHz MHz and 5

GHz, RSS was measured at different distances.

On the second floor of a building, three rooms and hallways and one hallway on

the first floor were chosen as locations. The first data was recorded at a distance

of 0.5m away from the access point. This access point was considered as the close-

in-reference distance d0. RSS was recorded at 2 meters up to 24 meters in the case

of LOS. NLOS measurements were obtained at different intervals. The values of n

= 2.31 and σ = 6.42 were calculated by using the measurements gathered during

the field survey. They deduced that the measured data were distributed normally

because the 95% data fall in 2σ. So, they concluded that over distance up to 30m

the model provides accurate results.

2.3.5 Pathloss Exponent Estimation using One Line

Measurement and Gradient Descent Technique

The study in [51] presented two types of techniques for the estimation of PLE.

These techniques were One line measurement and gradient descent technique. In

one line measurement, PLE was found by using the extensive measurements of

RSS and distances. The other technique is to renovate environmental factors di-

rectly with the help of the gradient descent method. In gradient descent technique,

RSS is randomly measured as long as the locations are exactly known and this

technique is also known as online update measurement as the PLE can be up-

graded continuously. The values of RSS were gathered by locating the BTS and

MTS along a straight line. In one line measurement technique, obtained RSS was
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marked on a straight line. Received power at reference distance Pr (d0) was taken

at different locations by moving both transmitter and MTS at the same time for

all the positions and directions. The mean value was measured to be -35 dBm.

The difference of maximum and minimum RSS was measured (-35 + 62 = 27 dB).

The value of PLE was n = (27/9.5424) = 2.83.

For the online update technique, the authors performed three different tasks:

• Task 1: Measurement of predesigned spread,

• Task 2: Measurement from small-to-big rectangular,

• Task 3: Measurement from big-to-small rectangular.

Figure 2.1: Rectangular shaping [51].

The area in which the measurements were taken can be in any type of shape.

The allocation of four different transmitters always made a rectangular shape to

include the mobile receiver at mid of the rectangle. For every location, ten training

cycles were observed. For calibration, a total of 110 training cycles were used. For

each cycle, the value of PLE was measured.
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2.3.6 Pathloss Exponent Estimation using VariLoc

Ranging Algorithm

Due to channel fading, measurements of RSS are known as unreliable parameters

for the estimation of PLE and localization. To solve this problem, the research

in [32] presented a ranging technique known as VariLoc. The variLoc method is

depending on the beacon’s transmitting power and Psens for ranging instead of

considering RSS. The advantage of variLoc ranging is to consume the low power

by reducing the transmission power to find RSS ’ is approximately equal to Psens.

The receiver can utilize averaging over many measurements of RSS sent at different

times with different powers to decrease the variation in RSS [52]. They analyzed

that depending on a very less transmission power can fulfill the connectivity need

of the receiver and it was more robust against multipath fading and environmental

change.

2.4 Research Gap and Problem Formulation

As discussed in the literature survey, there are several studies on the comparison

of PLMs with field measurements in different countries, but we have not been

able to identify any comprehensive study on 4G LTE pathloss modelling for any

area of Pakistan. The efficiency and accuracy of existing models are limited when

they are deployed for an environment that is different in terms of geographical

formation from that for which they have been designed. Therefore, it is required

to investigate pathloss models for their suitability for accurate signal estimation

in particular areas of Pakistan.

Hence, this work is focused to investigate the performance of the most com-

monly used predictive PLMs by comparing them with field measurements for three

different sites on the Islamabad Expressway, Pakistan. Based on the comparison,

a best fit predictive PLM is further modified and it validates the accuracy of the

modified model for improved pathloss estimation in a similar area.

Most literature on the performance analysis of cellular networks uses single slope
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PLM to characterize the physical propagation environment. However, the massive

data traffic in WCS leads to increasing network uncertainties, which cause varia-

tions in the links significantly. Hence, it is required to employ PLMs that account

for the variation in the environment. This work is an attempt to fill this gap

by considering a multi-slope PLM and validating it with our measurements to

overcome the shortcoming of single slope PLM.

Although a great amount of work has been done on the lognormal shadowing

model and multi-slope modelling separately, according to the best of our knowl-

edge, there is not even single literature in which the lognormal shadowing PLM

has been implemented on the multiple slopes for the outdoor environment.In this

thesis, the multi-slope lognormal shadowing PLM is proposed for the outdoor en-

vironment to improve the performance of single slope lognormal shadowing PLM.

All previous efforts to take measurements were by using complex software and

costly equipment such as a spectrum analyzer, laptop with Ericsson software, a

network communication analyzer (ACTIX analyzer 4.05) software, and GPS re-

ceiver, etc. In this research work, a simple and inexpensive way to measure

the field data is presented. A Net-Track Lite and Cell mapper applications are

used during the site surveys.

2.5 Research Methodology

In the first phase of the research, field measurements are aimed to be collected. For

this purpose, three sites are chosen on Islamabad Expressway, Pakistan. A drive

test is conducted with the help of a cell phone Samsung A50 pre-installed with g.net

track lite and cell mapper applications and enabled LTE sim. The vehicle is driven

at a speed of 50 km per hour while the cell mapper recorded the RSS continuously.

The 100 measurements are taken at 0.1 km, 0.2 km, 0.3 km up to 4km, 2km and

2km for site-1, site-2, and site-3 respectively. By utilizing the field measurements,

the pathloss is analyzed for each site in Matlab software. For comparison and

analysis, existing PLMs such as Hata-Okumura, ECC33, COST-231, Ericson, SUI,

and Lognormal shadowing models are analyzed in Matlab. Finally, a comparison
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of predictive PLMs with measurement results is made on the basis of pathloss.

Based on the comparison, the best-estimated PLM is proposed. Afterwards, we

perform a comparison of single slope PLM with multi-slope PLM. In this regard,

the multi-slope lognormal shadowing PLM is proposed. Moreover, the distribution

of field measurements is analyzed by using the lognormal distribution.

2.6 Thesis Contributions

Major contributions of this thesis are listed as under:

• To obtain the field measurements, a drive test is conducted for three different

cell sites selected on Islamabad Expressway, Pakistan. By utilizing the field

measurements, the pathloss is measured.

• Field measurements are compared with the theoretical PLMs such as the

Hata-Okumura model, ECC-33 model, COST-231 Hata model, SUI model,

Ericson model, and Lognormal shadowing model.

• The theoretical models that are considered in this thesis are primarily based

on single slope PLM. Since the pathloss is not accurately estimated by single

slope PLM, therefore, a multi-slope PLM is used to overcome the shortcom-

ing of single slope PLM.

• Multi-slope PLM is used in two different ways, i.e., segmental multi-slope

PLM and single-reference multi-slope PLM. The estimation of PLE is done

by using both multi-slope PLMs. On the basis of estimated PLEs, a com-

parison is drawn between segmental and single-reference multi-slope PLMs.

• The lognormal shadowing PLM is evaluated under segmental multi-slope

model and proves that the multi-slope model improves the performance of

a cellular network in comparison to the single slope model. Moreover, we

investigate the distribution of field measurements by using lognormal distri-

bution.
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Figure 2.2: Flow chart of comparison of pathloss models with field measure-
ments.



Chapter 3

Field Measurements

To check the efficiency of predictive PLMs, the comparative analysis between

measured and calculated values was required and for comparison, the field mea-

surements were needed. Hence to obtain the field measurements, the selection of

BTSs is very important. In this chapter, a detailed description of the measurement

setup, field measurements, information of BTSs and equipment used during the

collection of field measurements are presented.

3.1 Measurement Setup

3.1.1 Site Geography

The Islamabad Expressway, Pakistan was selected to obtain the field measure-

ments. This Expressway passes from north to south as shown in Fig 3.1 and

provides quick access between Islamabad and Rawalpindi city. Three BTSs were

chosen as the sources of signal to obtain the field measurements on the Islamabad

Expressway. These BTSs were in Koral Town, Korang Town, and Soan Garden

as shown in Fig 3.2, 3.3 and 3.4, respectively. The selected terrains have the

availability of less vegetation and houses or buildings mostly below 20 meters.

36
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Figure 3.1: Selected base stations on Islamabad Expressway.

3.1.2 Measurement Procedure

At three different locations on the Expressway, data was collected when driving a

vehicle. The testing tool used to obtain the field measurements was Samsung mo-

bile A50 in which pre-installed the G.Net track lite and cell mapper applications.

RSS values were recorded at various distances from each of the three BTSs, named

as BTS1, BTS2, and BTS3. Measurements were taken within the frequency of 1.8

GHz at intervals of 0.1 km, after an initial separation of 50m away from BTS1,

BTS2, and BTS3. The area covered by BTS1, BTS2, and BTS3 was 4 km, 2

km, and 2 km, respectively. The exact locations of BTSs were found by using the

latitudes, longitudes, and cell-id of each tower as shown in Table 3.1.

As shown in Table 3.1, the information of each tower, such as cell identity, lati-

tude, and longitude, was obtained from the Head office of “Mobilink” Islamabad

for analysis.
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Figure 3.2: Image
of BTS1 used (Ko-

ral town).

Figure 3.3: Image
of BTS2 used (Ko-

rang town).

Figure 3.4: Image
of BTS3 used (Soan

garden).

Table 3.1: Information of selected base stations.

Base Station Location Coordinates(Lat,Long) Cell-Id

BTS1 Koral Town 33.60932747, 73.13341261 RWP-26131

BTS2 Korang Town 33.57845253, 73.15050676 RWP-13303

BTS3 Soan Garden 33.56592995, 73.15608449 RWP-07001

3.1.3 Base Stations Parameters

Table 3.2 presents the parameters of the selected BTSs. These parameters were

used in analyzing the field measurements in Matlab. The parameters regard-

ing each BTS including the transmission frequency, transmitted power, height of

antenna, EIRP, and BTS antenna gain were obtained from the headquarter of

“Mobilink” located in F8 Islamabad.
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Table 3.2: Parameters of selected base stations.

Parameters Values

BTS Transmitting power 47 Watts

MTS antenna height 1.5m

BTS antenna height 60m

BTS antenna gain 15dBi

MTS antenna gain 1dBi

Operating frequency 1.8 GHz

EIRP 62dBm

3.1.4 Equipment and Software Used

The hardware used to gather the measurements was samsung A50 mobile phone.

The following applications were used to obtain the field measurements:

• G-Net Track Lite.

• Cell Mapper.

• Google Earth Map.

G-net track application is a wireless monitor and drive test tool for android mo-

bile devices. This application allows monitoring and logging of mobile network

parameters without using specialized tools [62]. Cell mapper is a cellular coverage

application. In this application, we can check our own provider mobile network

coverage. Also, we can see our provider mobile locations of the tower on the

map [63]. The google earth map is a 3D representation of earth-based primarily

on satellite imagery. This can be used to measure the exact distances between

different sites.
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3.2 Field Measurements for Comparative

Analysis

3.2.1 Measured Received Signal Strength

The values of the RSS were taken at an interval of 0.1 km as shown in Appendix

Table A.1 to A.3. The 100 measurements are taken at distances of 0.1 km, 0.2

km, 0.3 km up to 4km, 2km and 2km fixed length for BTS1, BTS2, and BTS3

respectively. For each BTS, RSS was started to record at a reference distance of 50

meters from the BTS. By using the field measurements, the average values of RSS

for each interval are obtained and these average values were used in simulations.

The results of measured RSS are graphically presented in Fig 3.5, 3.6, and 3.7 for

three locations: Koral town, Korang Town and Soan garden, respectively. The

results show decreasing trend of RSS with respect to distance. From the result

depicted in Fig 3.10, it is analyzed that the RSS increases significantly from a

distance of 0.1 km up to 0.4 km and then starts decreasing with T-R separation

distance. There is might be no shadowing in that particular region which causes

the RSS to increased.

Figure 3.5: Measured RSS from BTS1 located in Koral town.
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Figure 3.6: Measured RSS from BTS2 located in Korang town.

Figure 3.7: Measured RSS from BTS3 located in Soan garden.

3.2.2 Measured Pathloss

By utilizing the measurements of RSS, pathloss was analyzed and graphically

presented against separation distance for each BTSs in Matlab. For each value

of measured RSS, the corresponding pathloss was calculated using the following

equation:

L(measured) = EIRP − Pr (3.1)
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where L represents the pathloss, Pr is the measured RSS and EIRP is effective

isotropically radiated power and it is used to represent the product of antenna

gain and transmitted power.

EIRP = Gt × Pt (3.2)

where, Gt is the BTS antenna gain and Pt represents the transmitted power. Fig-

ures 3.8 to 3.10 illustrate the increasing trend of pathloss with distance. The result

of driving test performed in the area of Koral town, Korang town, and Soan gar-

den observed a mean pathloss of 139 dB, 136.55 dB, and 138.55 dB, respectively.

From Fig 3.10, it is observed that the pathloss reduces significantly from distance

of 0.1 km up to 0.4 km and then shows the increasing trend. There is might be no

shadowing in that particular region which causes the pathloss to decreased. The

maximum values of pathloss were found 173 dB, 163 dB, and 167 dB for Koral

town, Korang town, and Soan garden, respectively.

Figure 3.8: Measured pathloss from BTS1 located in Koral town.
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Figure 3.9: Measured pathloss from BTS2 located in Korang town.

Figure 3.10: Measured pathloss from BTS3 located in Soan garden.

3.3 Measured RSS at various Distances for

Estimation of Pathloss Exponents

In WCS, the massive data traffic and densification lead to growing network un-

certainties, which significantly cause the variations in the communication links.

These variations occur due to many physical factors such as ground reflections,

link distances, scattering, and interference, make pathloss modeling a difficult task
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in wireless networks. To analyze these variations in field measurements of RSS,

over ten thousand measurements were obtained at different distances as shown in

Fig 3.13 to 3.17.

The measurements were obtained at distances of 50 m, 500 m, 1000 m, 1500 m,

2000 m, 2500 m, 3000 m, 3500 m, and 4000m. Hence, for every distance, there

are a thousand values of RSS. By utilizing the measurements of RSS, the average

values of RSS are obtained. These average values of RSS are utilized to calculate

the PLE and analyze how the PLE changes with variations in RSS (presented in

Chapter 5). From Fig 3.11 to 3.15, it is observed that there are variations in the

field measurements with respect to distance.

Figure 3.11: Measured data at 50 and 500 meters.
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Figure 3.12: Measured data at 1000 and 1500 meters.

Figure 3.13: Measured data at 2000 and 2500 meters.
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Figure 3.14: Measured data at 3000 and 3500 meters.

Figure 3.15: Measured data at 4000 meters.



Chapter 4

Comparative Analysis of Field

Measurements

In this chapter, the comparison between drive test based measured pathloss and

predicted pathloss using the theoretical PLMs are discussed in detail. With the

help of the bar chart, the previous studies of various field measurements and their

comparative analysis are also presented. By the end of this chapter, a single

slope PLM is applied on the field measurements to analyze the trend of field

measurements.

4.1 Comparison of Theoretical PLMs with Field

Measured Data

In this research work, six predictive PLMs have been used to estimate the pathloss

as discussed earlier. The detailed comparison of measured pathloss with the exist-

ing PLMs for three different BTSs: BTS1, BTS2, and BTS3 is shown in Appendix

A.4 to A.6. The comparison between measured pathloss and predicted pathloss

using the theoretical PLMs is graphically shown in this section.

47
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4.1.1 Comparison of Pathloss Models with Field

Measurements for BTS1

The outcome of the drive test performed in the coverage area of BTS1 resulted

in a mean pathloss of 139 dB. Mean pathloss values of 127.6183 dB, 136.3034

dB, 144.9947 dB, 168.6057 dB, 122.4747 dB, 191.4006 dB are calculated by the

COST-231, Hata-Okumura, Lognormal shadowing, Ericsson, SUI, and ECC- 33

PLMs respectively.

In Table 4.1, the percentage difference between the drive test based measured

pathloss and predicted pathloss using the above models is presented. It is ob-

served from Table 4.1 that the Hata-Okumura and Lognormal shadowing shows

the least error of 3.36% and 2.86% respectively. Therefore, measured pathloss

is best estimated by the Hata-Okumura and Lognormal shadowing PLMs among

other PLMs.

Table 4.1: Comparison of percentage difference(error) for BTS1.

Base Station Hata-Okumura COST-231 Lognormal Ericsson SUI ECC-33

BTS1 3.36% 9.47% 2.86% 19.23% 13.00% 34.7%

As shown in Fig 4.1, the comparison result of BTS1 shows that the ECC-33 over-

estimated the measured pathloss with an error of 34.7%. Because the ECC-33

model was designed for the environment of Tokyo, which is a highly build-up

city. The locations used in this thesis are in urban region but not highly build-up

city, therefore, ECC-33 does not show a good estimation of pathloss. However,

the Hata-Okumura and Lognormal shadowing PLMs showed the closest agree-

ment with field measurements while the SUI PLM underestimated the measured

pathloss. Moreover, the COST-231 PLM shows the small variation from field

measurements with an error of 9.47%.
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Figure 4.1: Comparison of estimated and field measured pathloss for BTS1.

4.1.2 Comparison of Pathloss Models with Field

Measurements for BTS2

The result of the drive test performed in the coverage area of the BTS2 observed

a mean pathloss of 136.55 dB. Mean pathloss values of 118.3578 dB, 126.9482 dB,

133.6706 dB, 160.1459 dB, 112.3564 dB, 215.1509 dB are predicted by the COST-

231, Hata-Okumura, Lognormal Shadowing, Ericsson, SUI, and ECC-33 PLMs

respectively.

In Table 4.2, the percentage difference between the measured pathloss and pre-

dicted pathloss is presented. It is clear from Table 4.2 that amongst the used

PLMs, the Lognormal shadowing PLM best estimates the measured pathloss with

a minimal error of 2.17%. This indicates that the measured pathloss is the best

estimated by the lognormal shadowing PLM as compared to other PLMs.

From the results as depicted in Fig 4.2, it is shown that the ECC-33 and Ericson

PLMs does show a quite high estimation of measured pathloss. The result of the
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Table 4.2: Comparison of percentage difference(error) for BTS2.

Base Station Hata-Okumura COST-231 Lognormal Ericsson SUI ECC-33

BTS2 7.26% 13.49% 2.17% 16.76% 17.78% 56.52%

ECC-33 PLM is far away from the measured pathloss that means it overestimates

the measured pathloss. Moreover, the SUI PLM showed the minimum pathloss

of 126.2257 dB. The Hata-Okumura model shows the small variation from field

measurements with an error of 7.26%.

Figure 4.2: Comparison of estimated and field measured pathloss for BTS2.

4.1.3 Comparison of Pathloss Models with Field

Measurements for BTS3

The outcome of the drive test performed in the area coverage of the BTS3 resulted

in a mean pathloss of 138.55 dB. Mean pathloss values of 118.3578 dB, 126.9482

dB, 158.6706 dB, 160.1459 dB, 112.3564 dB, 284.3259 dB are predicted by the
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COST-231, Hata-Okumura, Lognormal shadowing, Ericsson, SUI, and ECC-33

PLMs respectively.

In Table 4.3 shown that the Hata-Okumura PLM showed the closest agreement

to the measured pathloss with a minimum error of 9.59%. This prompts that

the measured pathloss is best estimated by the Hata-Okumura PLM among other

PLMs. Figure 4.3 illustrates that the ECC-33 PLM showed a quite high estima-

Table 4.3: Comparison of percentage difference(error) for BTS3.

Base Station Hata-Okumura COST-231 Lognormal Ericsson SUI ECC-33

BTS3 9.59% 15.64% 13.06% 13.70% 19.78% 99.10%

tion of measured pathloss of 295.1104 dB. Moreover, from distance up to 0.3 km

to 1 km, the Hata-Okumura, SUI, and the COST-231 PLMs are nearer to mea-

sured pathloss while the lognormal and Ericson PLMs are nearer to the measured

pathloss from distance up to 1.4 km to 2 km.

Figure 4.3: Comparison of estimated and field measured pathloss for BTS3.
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4.2 Fitness of various Field Measurements and

their Comparative Analysis

A great amount of work has been done on the comparison of field measured data

with predictive PLMs in different countries [5, 6, 38, 44, 45]. Many PLMs for

WCS were developed in the literature. However, selecting a suitable PLM for a

given environment is not quite an easy task because terrain profile data (terrain

elevation, height, clutter, altitude, and the distance between MTS and BTS) is

different from place to place. For instance, several studies conducted in Malaysia,

China, India, and in many other countries have indicated that the commonly used

PLMs are less efficient in estimating the pathloss correctly. Fig 4.4 - 4.6 illustrates

the comparison of PLMs performed in various countries along with the comparison

performed in this thesis for Pakistan(2020).

As depicted in the Figs. 4.4 - 4.6, the ECC-33 PLM showed the best estimation

of measured pathloss in comparative study of Tarakan, Nigeria(2018), and Tanza-

nia. In the China Study, the COST-231 and ECC-33 PLMs are found to highly

overestimate the measured pathloss while, the results of Malaysia study show that

amongst the other PLMs, the SUI and lognormal shadowing PLMs showed the

nearest agreement to the measured pathloss.

The outcomes of the India(2013) study show that the measured pathloss is best es-

timated by the SUI PLM. In Banta Algeria, India(2011) and Nigeria(2018) study,

the result of the HATA-Okumura and COST-231 PLMs are found near to mea-

sured data in urban area. The results of the comparison performed in Pakistan

show that the measured pathloss is best estimated by lognormal shadowing, and

Hata-Okumura in all three BTSs.

Fig. 4.7 illustrates the error between the field measured pathloss and predicted

pathloss obtained using theoretical pathloss models of previous studies along with

the study performed in this thesis for pakistan(2020). From Fig. 4.7, it is ob-

served that there are small variations exist between the results of this thesis and

the outcomes of comparative studies performed in other countries. This is be-

cause the information about terrain is different from place to place. In this work,
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Figure 4.4: Fitness of field measurements of various countries with pathloss
models along measurements of BTS1.

Figure 4.5: Fitness of field measurements of various countries with pathloss
models along measurements of BTS2.

it is observed that the path loss values of the ECC-33 model are very high which

means the RSS of the ECC-33 PLM is higher than the threshold level of mobile re-

ceiver -114 dBm. Hence, the ECC-33 model cannot be preferred for the maximum

coverage area for the selected BTSs.
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Figure 4.6: Fitness of field measurements of various countries with pathloss
models along measurements of BTS3.

Figure 4.7: Error of field measurements of various countries with pathloss
models along measurements of Pakistan.

4.3 Single Slope Pathloss Model

Most of the existing PLMs are of single slope, i.e., the model uses a single slope to

represent the pathloss or RSS over the complete distance range. The single slope

PLM is easy to analyze because it characterizes all the links distance with a single

PLE. In this thesis, the single slope model is fitted on the field measurements

to check whether the field measurements follow the single slope trend. From field
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measurements, the average values of RSS were found to be -30 dBm and -103 dBm

at a distance of 50 m and 4000 m respectively. Hence, a single slope was made by

using the points: (50,-30) and (4000,-103) as shown in Fig 4.7. Afterwards, the

value of slope was found by using the following equation:

n =
Pr(dmin) − Pr(dmax)

10 × log10((
dmax

d0
) − (dmin

d0
))

(4.1)

where, Pr(dmin) is the RSS at the minimum distance, Pr(dmax) is the RSS at the

maximum distance, d0 denotes the minimum distance. The difference between

maximum and minimum RSS is:

Pr(dmin) − Pr(dmax)= −30dBm− (−103dBm) = 73dBm

The difference between maximum and minimum distance is:

10 × log10(
4000
50

− 50
50

) = 18.976

Thus, the value of PLE is:

n =
73

18.976
= 3.846

As presented in Table 1.1, the above value of PLE “n” lies in the shadowed cellular

urban region. The area in which the measurements were obtained is an urban

region. It can be said the “shadowed urban region” because trees and vehicles

became the reason for shadowing. Thus, the estimated value of PLE is correct

according to the selected area as defined in [50]. In Fig 4.7. a single slope represents

a trend which the measured data should follow. But, from distance 500 m to 2500

m, field measurements do not follow a single slope trend. This is due to the fact

that the variations in RSS increased in that particular distance range from 500 m to

2500 m. These variations occur due to many factors including ground reflections,

scattering, and shadowing, etc. Performance degradation appears because the

single slope model does not capture the dependence of the PLE on the link distance

correctly. This has led to the idea of multi-slope PLM, which applies different
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slopes for different regions of T-R separation distances. Hence, a multi-slope

model is used in the next chapter to overcome this problem.

Figure 4.8: Single slope pathloss model.



Chapter 5

Multi-slope Lognormal

Shadowing Pathloss Model

The single-slope PLM mostly falls short in precisely capturing the PLE dependence

on the physical propagation environment. This limitation leads to the considera-

tion of multi-slope PLM, which is discussed in this chapter. The multi-slope PLM

has been presented in two different ways namely, segmental multi-slope PLM and

single-reference multi-slope PLM. A comparison of these two multi-slope PLMs is

also mentioned. Furthermore, the lognormal shadowing PLM is evaluated using a

segmental multi-slope model. At the end of this chapter, the distribution of field

measurements at various distances are discussed in detail.

5.1 The Modified Multi-slope Pathloss Model

Practically, propagation is very difficult to characterize due to multipath fading,

ground reflections, shadowing, scattering, and many other physical conditions.

Since the number of possible realizations of physical propagation environments is

boundless, a single slope PLM mostly falls short in precisely capturing the physical

propagation environment. The single slope model characterizes all the links with a

single PLE. The densification of wireless network causes more uncertainties in cell

57
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patterns and thus, the communication links cannot be accurately estimated by a

single PLE [58, 59]. Therefore, the multi-slope PLM is more realistic to estimate

the increased variations in the communication links.

Multi-slope PLM involves different PLEs for various link distances. The value of

PLE determines the signal decay rate in each distance range [36, 37]. In this thesis,

the field measurements is modeled using multi-slope modeling with six different

segments as shown in Fig 5.1.t

Figure 5.1: Multi-slope model.

In Fig 5.1, the n1, n2, n3, n4, n5, and n6 represent the values of slopes of segments:

d0 to d1, d1 to d2, d2 to d3, d3 to d4, d4 to d5, and d5 to d6 respectively. Multi-slope

PLM can be divided into two types; i.e. Segmental multi-slope PLM [56, 57] and

Single-reference multi-slope PLM.

5.1.1 Segmental Multi-slope Pathloss Model

The segmental multi-slope PLM involves multiple segments with different PLEs.

This model considers various slopes above and beyond the breakpoint distance.

The breakpoint distance is the distance where the slope changes [60, 61]. In this

thesis, the segmental multi-slope PLM has six slopes as shown in Fig 5.2. The

values of the PLE of each segment are calculated. The following formula is used
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to develop a segmental multi-slope PLM:

P (d1) = P0(
d0
d1

)n1 (5.1)

where, P (d1) denotes the RSS at a distance d1, P0 represents the RSS at a refrence

distance(d0) from transmitter and n1 represents the value of slope from d0 to d1

segment as shown in Fig 5.1. Likewise, the received power for segment-2, segment-

3, and segment-4 are presented by the following equations:

P (d2) = P0(
d1
d2

)n2 (5.2)

P (d3) = P0(
d2
d3

)n3 (5.3)

P (d4) = P0(
d3
d4

)n4 (5.4)

P4 = P0(
d0
d1

)n1(
d1
d2

)n2(
d2
d3

)n3(
d3
d4

)n4 (5.5)

The received power in each segment is sensitive to equation 5.1, 5.2, 5.3, and 5.4.

In this thesis, six different segments are proposed. Hence, the equation for the six

segments will be:

P6 = P0(
d0
d1

)n1(
d1
d2

)n2(
d2
d3

)n3(
d3
d4

)n4(
d4
d5

)n5(
d5
d6

)n6 (5.6)

For generalization,

PN = P0(
d0
n1

d1
n1

× d1
n2

d2
n2

× d2
n3

d3
n3

× d3
n4

d4
n4

× d4
n5

d5
n5

× d5
n6

d6
n6

) (5.7)

PN = P0(d0
n1d1

n2−n1 × d2
n3−n2d3

n4−n3 × d4
n5−n4d5

n6−n5 × d6
−n6) (5.8)

Thus, the following formula of segmental multi-slope PLM is used for calculating

the value of PLE for each segment,

PN =
N∏
i=1

P0(
di−1

di
)ni (5.9)
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Fig 5.2 below illustrates the slope is divided into six different segments, therefore

it is known as segmental multi-slope PLM. In order to model the measured data

properly, the segments are made according to the field measurements. The x-axis

shows the distance from 50 to 4000 m in the logarithmic scale and the y-axis

shows the RSS in dBm. The values of PLE “n” are found for every segment using

field measurements. To estimate the RSS, PLE is an important factor in wireless

communication. The average values of RSS at various distances are plotted against

distance. The measured data is fitted on the average values at a distance of 50

m, 500 m, 1000 m, 1500 m, 2000 m, 3000 m, and 4000 m. From the results

Figure 5.2: Segmental multi-slope pathloss model with different PLEs.

shown in Table 5.1, it is observed that the signal decay rate is high in segments

n3, and n6 which means the rate of decreasing RSS is higher than as compared

to other segments. This is due to the obstacles such as, trees, buildings, and

trucks which cause the shadowing effects and then data deviated from the mean

value. The value of n4 is very small that means the decreasing rate of RSS is

very low. When the value of n <2 means that for short distances, the effects of

path loss are fairly negligible versus for example the positive impact of reflections

or directionality [57]. The variation in PLE relies on the value of RSS, that is,

whenever there is a speedy fall in the values of RSS, the PLE is increased.
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Table 5.1: Parameters of segmental multi-slope pathloss model.

Segments Distance(m) Break point(m) PLE n

n1 50-500 500 2.632

n1 500-1000 1000 2.190

n3 1000-1500 1500 9.26

n4 1500-2000 2000 0.456

n5 2000-3000 3000 5.78

n6 3000-4000 4000 10.85

5.1.2 Single-Reference Multi-slope Pathloss Model

In this section, multi-slope PLM is implemented by keeping the same reference

distance d0 in all segments as shown in Table 5.2. It would be clear more by the

following formula which has been used in simulating the multi-slope PLM with

respect to reference distance:

P (dN) =
N∏
i=1

P0(
d0
di

)ni (5.10)

where, d0 represents the reference distance, di is the changing distance from one

segment to another, P0 is the RSS at d0, N represents the total number of segments

and here the value of N is six. As shown in Fig 5.3, n1, n2, n3, n4, n5, and n6

represent the signal decay rate of each segment. The slope of each segment is

started from a single point because here, d0 is considered constant in all segments

but di changes when we move towards the next segment. From the results of

Table 5.2, it can be noticed that the values of PLE are gradually increased in the

single-reference multi-slope PLM. This is because as the MTS moves away from

the BTS, the signal decay rate increases with the transmission distance so the

corresponding PLE is increased. The single-reference multi-slope PLM is showing

the best estimation of PLE as compared to segmental multi-slope model.
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Figure 5.3: Multi-slope pathloss model with respect to reference distance.

Table 5.2: Values of PLE.

Distance(m) Break point position(m) PLE n

50-500 500 2.40

50-1000 1000 2.51

50-1500 1500 3.08

50-2000 2000 3.31

50-3000 3000 3.44

50-4000 4000 3.84

5.2 Comparison of Multi-slope Pathloss Models

In this section, the values of PLE which have been estimated using two different

modified multi-slope PLMs are compared with each other. The estimation of PLE

has been performed using the following two cases:
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• Case 1: Segmental multi-slope PLM.

• Case 2: Single-reference multi-slope PLM.

In Table 5.3, it is shown that the values of PLE are different in both cases. When

the environment gets worse due to ground reflections, scattering, shadowing, and

other physical features cause the measured PLE increase in some segments, the

decreasing rate of RSS is higher than the other segments and due to this, the

corresponding PLEs are also higher.

It is clear from Table 5.3 that the PLE increases gradually in case-2 whereas the

values of PLE aren’t increased gradually in case-1. The n3 and n6 of case-1 is quite

higher than the case-2 which means the signal decay rate is high in that particular

segments of case-1 as compared to case-2. This is due to the existing obstacles

such as, trees, buildings, or trucks which increases the effect of shadowing and

causes the n3 and n6 of case-1 increased. On the other side, n4 of case-1 is very

small as compared to case-2, which means the decreasing rate of RSS is very low.

In case-2, the values of PLE are smaller than the PLEs of case-1 except for the

value of n2. Since case-2 showed a gradual trend of PLEs in which the values

of PLE is gradually increased, therefore, the case-2 (single-reference multi-slope

PLM) can be preferred over case-1 (segmental multi-slope PLM) theoretically. But

practically, the segmental multi-slope PLM is more realistic to approximate the

increased variations in the links.

5.3 The Proposed Multi-slope Lognormal

Shadowing Pathloss Model

In wireless networks, theoretical PLMs are largely based on single slope PLM,

which falls short in accurately capturing the fading effects of the physical propa-

gation environment. However the analysis of the measurement data does not show

agreement with this practice and reflects a multi-slope behavior. The impact of
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Table 5.3: Comparison of segmental and single-reference multi-slope pathloss
models on the basis of PLE.

PLE Segments in Case-1 Case-1 Segments in Case-2 Case-2

n1 50-500 2.632 50-500 2.40

n2 500-1000 2.190 50-1000 2.51

n3 1000-1500 9.261 50-1500 3.08

n4 1500-2000 0.456 50-2000 3.31

n5 2000-3000 5.78 50-3000 3.44

n6 3000-4000 10.85 50-4000 3.84

the multi-slope phenomenon is evident from the variation in the PLE of differ-

ent segments of Islamabad Expressway. The lognormal shadowing PLM is thus

chosen based on its smallest error with the measured pathloss data and is further

extended to multi-slope lognormal shadowing PLM. RSS usually varies due to

the shadowing effect and shadowing is generated due to various hurdles between

BTS and MTS. Hence, the lognormal shadowing model is used to characterize the

shadowing effect. The shadowing effects have been modeled with multiple slopes

by using the equation 5.7.

PN = P0(
d0
n1

d1
n1

× d1
n2

d2
n2

× d2
n3

d3
n3

× d3
n4

d4
n4

× d4
n5

d5
n5

× d5
n6

d6
n6

) (5.11)

By taking log on the right side of equation, the equation (5.11) can be rewritten

as:

PN = P0 − 10n1 log(
d0
d1

) − 10n2 log(
d1
d2

) − 10n3 log(
d2
d3

) − 10n4 log(
d3
d4

)

− 10n5 log(
d4
d5

) − 10n6 log(
d5
d6

)

(5.12)

It is important to note that (5.12) gives the received power as a function of segment

PLEs and distances only and there is no consideration of environmental clutter

in it. Therefore, to account for the possible variation in received power due to
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numerous environmental factors, we add shadowing factor XσN in (5.12) to get:

PN = P0 − 10n1 log(
d0
d1

) − 10n2 log(
d1
d2

) − 10n3 log(
d2
d3

) − 10n4 log(
d3
d4

)

− 10n5 log(
d4
d5

) − 10n6 log(
d5
d6

) +XσN

(5.13)

Here, the following assumption is made,

(
d0
d1

) = (
d1
d2

) = (
d2
d3

) = (
d3
d4

) = (
d4
d5

) = (
d5
d6

) = α (5.14)

where α > 1, hence the equation (5.13) can be rewritten as:

PN = P0 − 10n1 log(α) − 10n2 log(α) − 10n3 log(α) − 10n4 log(α) − 10n5

log(α) − 10n6 log(α) +XσN

(5.15)

By taking the log(α) common from equation (5.15) to get:

PN = P0 − 10 log(α)[n1 + n2 + n3 + n4 + n5 + n6] +XσN (5.16)

The N-slope lognormal shadowing PLM can be defined as:

PN = P0 − 10ñ log(α) +XσN (5.17)

where, ñ represents the sum of all PLEs, XσN denotes the standard deviation of six

segments, and Pr(d0) represents the received power at close-in reference distance.

In this thesis, channel parameters are modeled in each segment with the different

PLEs n and standard deviation, σ. Fig 5.4 shows the proposed segmental multi-

slope lognormal shadowing PLM for an outdoor area. The values of PLE n and σ

were calculated by utilizing the measured data gathered during the site surveys.

The dotted lines show the upper and lower boundaries of 4σ in Fig 5.4. The upper

boundary of σ is not significant to this model because the upper limit does not

have any negative effect on the system. From this graph, it can be observed that

all the data points fall within the fourth standard deviation, 4σ, from the mean,

µ.
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Figure 5.4: Proposed segmental multi-slope lognormal shadowing pathloss
model.

To optimize and validate the effectiveness of the proposed model, the error is cal-

culated between the results of the proposed model and the single slope lognormal

shadowing PLM for BTS1. The optimization is a process in which the lognormal

shadowing PLM is adjusted using a segmental multi-slope model. The aim is to

get the predicted pathloss as close as possible to the measured pathloss. From the

result as depicted in Fig 5.4, it is shown that the multi-slope lognormal shadowing

PLM does show a good agreement to the field measurements. This model best

fitted on the field measurements using the multi-slope model. Hence, the proposed

model showed the best estimation and can estimate the field measured data with

a minimal error of 2.15% compared to single slope lognormal shadowing PLM was

about 2.86% as shown in Fig 5.5.
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Figure 5.5: Error of single slope and multi-slope lognormal shadowing pathloss
model.

5.4 Distribution of Field Measurements at

various Distances

In order to analyze the performance of cellular networks over different conditions

(shadowing, multipath fading, ground reflections, scattering, etc.), the propagation

channel is modeled as a lognormal distribution. Firstly, needs to estimate the

parameters (µ and σ) of the lognormal distribution in real environments from

field measurements. In this regard, the probability density functions (PDFs) of

lognormal distribution are plotted at distances of 50 m, 1000 m, 1500 m, 2000 m,

2500 m, 3000 m, 3500 m, 4000 m as shown in Fig 5.5 to 5.13 (see Appendix B).

The curves of the PDFs corresponding to the lognormal distribution generated by

using the distribution fitting tool in Matlab.

From the results as depicted in Fig 5.5 - 5.13, it is shown that the distribution

of field measurements of each location is a lognormal distribution with different

distribution parameters as shown in Table 5.4. In lognormal distribution, 68%

of the measured data should fall in one standard deviation, 1σ, and 95% of the

measured data should fall in 2σ [50]. From results, it is observed that more

than 90% of measured data fall in two standard deviation, 2σ. This is closed to

the theoretical results as discussed earlier. Therefore we can still say that this
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lognormal model comes out to be accurate because approximately measured data

of each location fall in the two standard deviation, 2σ.

Table 5.4: Parameters of lognormal distribution.

Distances (m) Mean Sigma Data in −2σ to +2σ Data in 2σ to +3σ

50 92.6 8.7 91% 4.8%

500 119.0 6.25 90% 3.6%

1000 125.2 5.13 94% 3.9%

1500 141.6 5.1 93% 7.4%

2000 141.1 5.9 94% 5.3%

2500 148.4 4.9 86% 13%

3000 152.3 5.9 89% 5.9%

3500 156.2 6.6 96% 3.4%

4000 166.0 3.7 93% 3.3%

Figure 5.6: Distribution of measured data at distance of 50m.



Chapter 6

Conclusion and Future Work

In this thesis, we have provided a comparison of six theoretical PLMs, i.e., Hata-

Okumura, ECC-33, Ericson, SUI, Lognormal shadowing, and COST-231 with field

measurements. The comparison has been performed in three different locations:

Koral Town, Korang Town and Soan Garden situated on Islamabad Expressway,

Pakistan. Furthermore, the multi-slope model has been used to improve the per-

formance of single slope PLMs.

6.1 Conclusion

After analyzing the results obtained through simulation of both comparative analy-

sis of PLMs and multi-slope PLMs, this entire work is concluded in the subsequent

paragraphs as follows;

The measured pathloss, when compared with theoretical values based on per-

centage difference, the lognormal shadowing PLM showed the closest agreement

to the measured pathloss with a minimum error of 2.86% and 2.17% for BTS1

and BTS2 respectively. The measured pathloss in BTS3 is best estimated by the

Hata-Okumura PLM with an error of 9.59%. The ECC-33 PLM overestimates

the measured pathloss of BTS1, BTS2, and BTS3 with a maximum error of 34%,

56%, and 99% respectively. Hence, the ECC-33 model cannot be preferred for the
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coverage area of the selected BTSs.

This thesis also studied the multi-slope PLM, where different link distances are

characterized by different PLEs. The analysis of the single slope model was not

shown the closest agreement to the field measurement data. Based on the results

of a single slope PLM, a multi-slope model has been used in two different ways

named as a segmental multi-slope model and single-reference multi-slope model.

For performance analysis, the simulations of both multi-slope models have been

performed in Matlab. It has been observed from the results that the single-

reference multi-slope model showed a good estimation of PLE in comparison to

the segmental multi-slope model.

Single slope lognormal shadowing PLM showed the closest agreement to the mea-

sured pathloss in terms of its error. Based on this, a lognormal shadowing PLM

has been further extended to multi-slope lognormal shadowing PLM. The pro-

posed lognormal shadowing PLM model showed high accuracy and making the

minimum error to 2.15% as compared to the single slope lognormal shadowing

PLM was about 2.86%. Furthermore, the distribution of field measurements at

various distances are also analyzed using lognormal distribution. It has been ex-

tracted from the results that more than 90% measured data fall in 2σ. Therefore,

this lognormal model comes out to be accurate because approximately measured

data fall within 2σ.

6.2 Future Work

The work performed in this thesis provides a base for several future works. Col-

lected field measurements can be used to analyze the effect of the pathloss in

different applications that depend on RSS and PLE like RSS-based localization.

In future, the use of multi-slope model can be extended with different pathloss

models. Moreover, the pathloss models can be implemented by using different

machine learning techniques to estimate the pathloss.



Appendix A

Distance-wise Comparison of

Propagation Models with Field

Measurements

The values of the RSS were taken at an interval of 0.1 km as shown in Table A.1 to

A.3. The hundred measurements are taken at distances of 0.1 km, 0.2 km, 0.3 km

up to 4km, 2km and 2km for BTS1, BTS2, and BTS3 respectively. By utilizing

the field measurements, the pathloss is measured. The comparison of measured

pathloss with the existing PLMs for three different BTSs: BTS1, BTS2, and BTS3

is shown in Appendix A.4 to A.6.
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Table A.1: Measured pathloss and RSS from BTS1 located in Koral town.

Distance(km) RSS(dBm) Measured Pathloss(dB)

0.1 -47 109
0.2 -57 119
0.3 -57 190
0.4 -57 119
0.5 -61 123
0.6 -61 123
0.7 -64 126
0.8 -65 127
0.9 -65 127
1.0 -65 127
1.1 -67 129
1.2 -71 133
1.3 -63 125
1.4 -74 136
1.5 -65 127
1.6 -65 127
1.7 -67 129
1.8 -77 139
1.9 -73 135
2.0 -74 136
2.1 -79 141
2.2 -85 147
2.3 -86 148
2.4 -77 139
2.5 -77 139
2.6 -79 141
2.7 -81 143
2.8 -80 142
2.9 -86 148
3.0 -88 150
3.1 -91 153
3.2 -96 158
3.3 -99 161
3.4 -101 163
3.5 -98 160
3.6 -107 169
3.7 -102 164
3.8 -107 169
3.9 -111 173
4.0 -111 173
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Table A.2: Measured pathloss and RSS from BTS2 located in Korang town.

Distance(km) RSS(dBm) Measured Pathloss(dB)

0.1 -51 113
0.2 -63 125
0.3 -65 127
0.4 -57 119
0.5 -65 127
0.6 -71 133
0.7 -73 135
0.8 -73 135
0.9 -65 127
1.0 -71 133
1.1 -77 139
1.2 -63 125
1.3 -73 135
1.4 -78 140
1.5 -75 137
1.6 -84 146
1.7 -96 158
1.8 -92 154
1.9 -98 160
2.0 -101 163

Table A.3: Measured pathloss and RSS from BTS3 located in Soan garden.

Distance(km) RSS(dBm) Measured Pathloss(dB)

0.1 -67 129
0.2 -59 121
0.3 -55 117
0.4 -39 101
0.5 -53 115
0.6 -57 119
0.7 -55 117
0.8 -51 113
0.9 -61 123
1.0 -73 135
1.1 -81 143
1.2 -90 152
1.3 -91 153
1.4 -98 160
1.5 -101 163
1.6 -97 159
1.7 -102 164
1.8 -97 159
1.9 -107 169
2.0 -105 167
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Table A.4: Comparison of estimated values of pathloss models with field measurements from BTS1 located in Koral town.

Distance(km) Measured Pathloss(dB) Hata-Okumura (dB) COST-231 (dB) Lognormal (dB) Ericson(dB) SUI (dB) ECC-33 (dB)
0.1 109 96.3784 87.7880 98.9996 132.2194 78.9549 182.1149
0.2 119 106.3886 97.7982 110.5591 141.3640 89.8924 183.5230
0.3 119 112.2442 103.6538 117.3210 146.7133 96.2903 184.6015
0.4 119 116.3988 107.8084 122.1187 150.5087 100.8298 185.4807
0.5 123 119.6213 111.0309 125.8400 153.4526 104.3509 186.2279
0.6 123 122.2543 113.6640 128.8806 155.8579 107.2278 186.8807
0.7 126 124.4805 115.8901 131.4513 157.8916 109.660 187.4623
0.8 127 126.4089 117.8186 133.6782 159.6533 111.7672 187.9881
0.9 127 128.1099 119.5195 135.6425 161.2072 113.6258 188.4688
1.0 127 129.6315 121.0411 137.3996 162.5972 115.2883 188.9122
1.1 129 131.0079 122.4176 138.9890 163.8546 116.7922 189.3243
1.2 133 132.2645 123.6741 140.4401 165.0026 118.1652 189.7096
1.3 125 133.4205 124.8301 141.7750 166.0586 119.4282 190.0717
1.4 136 134.4907 125.9003 143.0109 167.0363 120.5976 190.4134
1.5 127 135.4871 126.8967 144.1615 167.9465 121.6863 190.7372
1.6 127 136.4191 127.8287 145.2378 168.7979 122.7046 191.0451
1.7 129 137.2946 128.7043 146.2488 169.5978 123.6613 191.3386
1.8 139 138.1201 129.5297 147.2020 170.3518 124.5632 191.6192
1.9 135 138.9009 130.3105 148.1037 171.0652 125.4163 191.8880
2.0 136 139.6417 131.0513 148.9591 171.7419 126.2257 192.1462
2.1 141 140.3463 131.7559 149.7728 172.3855 126.9956 192.3945
2.2 147 141.0181 132.4277 150.5486 172.9993 127.7296 192.6338
2.3 148 141.6601 133.0697 151.2899 173.5857 128.4311 192.8648
2.4 139 142.2747 133.6843 151.9997 174.1472 129.1026 193.0881
2.5 139 142.8642 134.2739 152.6804 174.6858 129.7468 193.3042
2.6 141 143.4306 134.8403 153.3345 175.2032 130.3656 193.5136
2.7 143 143.9757 135.3853 153.9639 175.7011 130.9612 193.7168
2.8 142 144.5009 135.9105 154.5704 176.1809 131.5350 193.9142
2.9 148 145.0077 136.4173 155.1556 177.0911 132.0887 194.1060
3.0 150 145.9708 136.9069 155.7210 176.6439 132.6237 194.2927
3.1 153 146.4293 137.3804 156.2678 177.5237 133.1411 194.4745
3.2 158 146.8737 137.8389 156.7973 177.9426 133.6421 194.6517
3.3 161 147.3048 138.2833 157.3105 178.3485 134.1276 194.8246
3.4 163 147.7235 138.7144 157.8083 178.7424 134.5987 194.9933
3.5 160 148.1303 139.1331 158.2918 179.1248 135.0561 195.1581
3.6 169 148.5260 139.5399 158.7616 179.4965 135.5006 195.3192
3.7 164 148.9111 139.9356 159.2185 179.8580 135.9329 195.4768
3.8 169 149.2862 140.3207 159.6632 180.2098 136.3537 195.6309
3.9 173 149.2862 140.6959 160.0964 180.5525 136.7636 195.7819
4.0 173 149.6519 141.0615 160.5187 180.8865 137.1631 195.9297
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Table A.5: Comparison of estimated values of pathloss models with field Measurements from BTS2 located in Korang town.

Distance(Km) Measured Pathloss(dB) Hata-Okumura (dB) COST-231 (dB) Lognormal (dB) Ericson(dB) SUI (dB) ECC-33 (dB)

0.1 113 96.3784 87.7880 93.3222 132.2194 78.9549 203.1214

0.2 125 106.3886 97.7982 106.5344 141.3640 89.8924 203.1051

0.3 127 112.2442 103.6538 114.2631 146.7133 96.2903 204.5733

0.4 119 116.3988 107.8084 119.7466 150.5087 100.8298 206.2766

0.5 127 119.6213 111.0309 124.0000 153.4526 104.3509 207.9760

0.6 133 122.2543 113.6640 127.4753 155.8579 107.2278 209.6097

0.7 135 124.4805 115.8901 130.4136 157.8916 109.6602 211.1631

0.8 135 126.4089 117.8186 132.9588 159.6533 111.7672 212.6361

0.9 127 128.1099 119.5195 135.2039 161.2072 113.6258 214.0336

1.0 133 129.6315 121.0411 137.2122 162.5972 115.2883 215.3618

1.1 139 131.0079 122.4176 139.0289 163.8546 116.7922 216.6266

1.2 125 132.2645 123.6741 140.6875 165.0026 118.1652 217.8340

1.3 135 133.4205 124.8301 142.2132 166.0586 119.4282 218.9891

1.4 140 134.4907 125.9003 143.6258 167.0363 120.5976 220.0964

1.5 137 135.4871 126.8967 144.9409 167.9465 121.6863 221.1600

1.6 146 136.4191 127.8287 146.1710 168.7979 122.7046 222.1835

1.7 158 137.2946 128.7043 147.3266 169.5978 123.6613 223.1702

1.8 154 138.1201 129.5297 148.4161 170.3518 124.5632 224.1228

1.9 160 138.9009 130.3105 149.4467 171.0652 125.4163 225.0438

2.0 163 139.6417 131.0513 150.4244 171.7419 126.2257 225.9354
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Table A.6: Comparison of estimated values of pathloss models with field measurements from BTS3 located in Soan garden.

Distance(km) Measured Pathloss(dB) Hata-Okumura (dB) COST-231 (dB) Lognormal (dB) Ericson(dB) SUI (dB) ECC-33 (dB)

0.1 121 96.3784 87.7880 118.3222 132.2194 78.9549 272.2964

0.2 121 106.3886 97.7982 131.5344 141.3640 89.8924 272.2801

0.3 117 112.2442 103.6538 139.2631 146.7133 96.2903 273.7483

0.4 101 116.3988 107.8084 144.7466 150.5087 100.8298 275.4516

0.5 115 119.6213 111.0309 149.0000 153.4526 104.3509 277.1510

0.6 119 122.2543 113.6640 152.4753 155.8579 107.2278 278.7847

0.7 117 124.4805 115.8901 155.4136 157.8916 109.6602 280.3381

0.8 113 126.4089 117.8186 157.9588 159.6533 111.7672 281.8111

0.9 123 128.1099 119.5195 160.2039 161.2072 113.6258 283.2086

1.0 135 129.6315 121.0411 162.2122 162.5972 115.2883 284.5367

1.1 143 131.0079 122.4176 164.0289 163.8546 116.7922 285.8016

1.2 152 132.2645 123.6741 165.6875 165.0026 118.1652 287.0090

1.3 153 133.4205 124.8301 167.2132 166.0586 119.4282 288.1640

1.4 160 134.4907 125.9003 168.6258 167.0363 120.5976 289.2713

1.5 163 135.4871 126.8967 169.9409 167.9465 121.6863 290.3350

1.6 159 136.4191 127.8287 171.1710 168.7979 122.7046 291.3585

1.7 164 137.2946 128.7043 172.3266 169.5978 123.6613 292.3452

1.8 159 138.1201 129.5297 173.4161 170.3518 124.5632 293.2977

1.9 169 138.9009 130.3105 174.4467 171.0652 125.4163 294.2187

2.0 167 139.6417 131.0513 175.4244 171.7419 126.2257 295.1104



Appendix B

Distribution of Field

Measurements at various

Distances

The measurement data was checked for its fitting using the Matlab. In this

regard, the probability density functions (PDFs) of lognormal distribution are

plotted at distances of 1000 m, 1500 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m

as shown in Fig B.1 to B.8. The curves of the PDFs corresponding to the lognor-

mal distribution generated by using the distribution fitting tool in Matlab.
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Figure B.1: Distribution of measured data at distance of 500m.

Figure B.2: Distribution of measured data at distance of 1000m.
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Figure B.3: Distribution of measured data at distance of 1500m.

Figure B.4: Distribution of measured data at distance of 2000m.
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Figure B.5: Distribution of measured data at distance of 2500m.

Figure B.6: Distribution of measured data at distance of 3000m.
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Figure B.7: Distribution of measured data at distance of 3500m.

Figure B.8: Distribution of measured data at distance of 4000m.
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